2020

MATHEMATICS - HONOURS

Paper : CC-5

Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$\mathbb{R} \mathbb{Q}$ denote the sets of real and rational numbers respectively.

Group - A

(Marks : 20)

1. Answer the following multiple choice questions having only one correct option. Choose the correct option and justify :
$(1+1) \times 10$
(a) $\lim _{x \rightarrow 0} \frac{1}{1+e^{\frac{1}{x}}}=$
(i) 0
(ii) 1
(iii) $\frac{1}{2}$
(iv) Does not exist.
(b) If $\lim _{x \rightarrow a}|f(x)|=|\ell|$, then $\lim _{x \rightarrow a} f(x)=$
(i) ℓ
(ii) $-\ell$
(iii) nothing can be said
(iv) $\pm \ell$.
(c) If $f(x)$ is continuous on the closed interval [3, 4], then in [3, 4]
(i) $|f(x)| \leq M \forall x \in[3,4]$ where $M>0$.
(ii) f is constant.
(iii) f is monotonic increasing.
(iv) f is monotonic decreasing.
(d) $f(x)=1-x, \quad x>0$

$$
\begin{array}{ll}
=2+x, & x<0 \\
=1, & x=0
\end{array}
$$

(i) At $x=0, f$ is continuous.
(ii) At $x=0, f$ is left continuous.
(iii) At $x=0, f$ is right continuous.
(iv) $\underset{x \rightarrow 0}{\operatorname{Lt}} f(x)$ does not exist.

(i) -1
(ii) 0
(iii) 1
(iv) 2 .
(f) Let $f(x)=\min \left\{x, x^{2}\right\}, x \in \mathbb{R}$. Then identify the correct statement.
(i) f is differentiable on R.
(ii) f is nowhere differentiable.
(iii) f is not differentiable at two values of x.
(iv) f is continuous except at two points.
(g) If $y=x^{4}+2 x^{3}-3 x^{2}-4 x$, then which one of the following statements is correct?
(i) y is increasing for $x<-2$
(ii) y is increasing for $-2<x<-\frac{1}{2}$
(iii) y is decreasing for $-\frac{1}{2}<x<1$
(iv) y is decreasing for $x>1$.
(h) Which one of the following statements is correct for the function $f(x)=x^{3}$?
(i) f has a local maximum at $x=0$.
(ii) f has a local minimum at $x=0$.
(iii) f has neither local maximum nor local minimum at $x=0$.
(iv) f has local extremum at a point in $\mathbb{R}-\{0\}$.
(i) Which one of the following functions is uniformly continuous on the domain as stated?
(i) $f(x)=x^{2}, \quad x \in \mathbb{R}$
(ii) $f(x)=\frac{1}{x}, x \in[1, \infty)$
(iii) $f(x)=\tan x, \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(iv) $f(x)=[x], x \in[0,1]$.
(j) Which of the functions does not satisfy the conditions of Rolle's theorem in $[-1,1]$?
(i) x^{2}
(ii) $\frac{1}{x^{2}}$
(iii) $\frac{1}{x^{2}+4}$
(iv) $\sqrt{x^{2}+3}$.

Group - B

(Marks : 25)
Answer any five questions.
2. (a) Let a function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows :

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { when } \\
-1 & x \in \mathbb{Q} \\
-1 & \text { when } \\
x \in \mathbb{R}-\mathbb{Q}
\end{array}\right.
$$

Using sequential criterion of limit of a function, show that $\lim _{x \rightarrow a} f(x)$ does not exist $(a \in \mathbb{R})$.
(b) Give an example of a function f defined over an interval I, such that
(i) f has jump discontinuity at a point of I.
(ii) f has removable discontinuity at a point of I.
3. (a) Evaluate : $\lim _{x \rightarrow 0+}\left(\frac{1+\tan x}{1+\sin x}\right)^{\frac{1}{\sin x}}$.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous on $[0,1]$ and f assumes only rational values.

If $f\left(\frac{1}{2}\right)=\frac{1}{2}$, prove that $f(x)=\frac{1}{2}$ for all $x \in[0,1]$.
4. Show that the image of a closed and bounded interval under a real-valued continuous function f is a closed and bounded interval.
5. (a) Prove or disprove : If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f o g$ is continuous at $a \in \mathbb{R}$, then both f and g are continuous at ' a '.
(b) Let $f(x)=x-[x], x \in \mathbb{R}$ where $[x]$ denotes the largest integer not exceeding x. Determine the discontinuities of f and show that they are all of the first kind. $\quad 2+3$
6. If $f:[a, b] \rightarrow \mathbb{R}$ be strictly monotonic and continuous on $[a, b]$, prove that f admits of an inverse function, which is monotonic and continuous on $f([a, b])$.
7. (a) Applying Sandwich theorem; evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
(b) If f is a real-valued continuous function on $[a, b]$, then prove that f is uniformly continuous on $[a, b]$. $2+3$
8. (a) Let f be continuous in an interval I and does not vanish anywhere in I. Show that f assumes the same sign throughout I.
(b) Give example of a function which is continuous on \mathbb{R}, attains its supremum but is not bounded below.
9. (a) Prove that there exist a point $a \in(0, \pi / 2)$ such that $a=\cos a$.
(b) Show that $\lim _{x \rightarrow \infty} a^{x} \cdot \sin \frac{b}{a^{x}}=\left\{\begin{array}{l}0 \text { if } 0<a<1 \\ b \text { if } a>1\end{array}\right.$.

Group - C
 (Marks : 20)

Answer any four questions.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ and $f^{\prime}(a)<f^{\prime}(b)$. Prove that $f^{\prime}(x)$ assumes every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.
11. State and prove Cauchy's Mean Value theorem.
12. (a) Prove that $f(3)$ is a local minimum value of $f(x)=|3-x|+|2+x|+|5-x|, x \in \mathbb{R}$ but $f^{\prime}(3)$ does not exist.
(b) Evaluate : $\lim _{x \rightarrow 1-}(1-x)^{\cos \frac{\pi x}{2}}$.
13. If $f(x)= \begin{cases}\sin x \times \sin \left(\frac{1}{\sin x}\right) & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}$

Show that f is continuous at $x=0$ but not derivable at that point.
14. (a) Let $f:[0,2] \rightarrow \mathbb{R}$ be a differentiable function such that $f(0)=0, f(1)=2, f(2)=1$.

Prove that $f^{\prime}(c)=0$ for some $c \in(0,2)$.
(b) Expand e^{x} as an infinite series $(x \in \mathbb{R})$.
15. Given $f^{n+1}(x)$ is continuous at $x=a$ and $f^{n+1}(a) \neq 0$.

Show that $\lim _{h \rightarrow 0} \theta=\frac{1}{n+1}$, where θ is given by
$f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots+\frac{h^{n-1}}{(n-1)!} f^{n-1}(a)+\frac{h^{n}}{n!} f^{n}(a+\theta h)$.
16. An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of the metal will be the least when the depth of the tank is half of the side of the base.

