# 2021

# **MATHEMATICS** — GENERAL

# Paper : GE/CC-3

#### Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.

Symbols and notations have their usual meanings.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

>। নিম্নলিখিত সব প্রশ্নগুলির উত্তর দাও ঃ

| (ক) | $\int_{0}^{\infty} e^{-x} dx$ -এর মান হল                 |     |                 |
|-----|----------------------------------------------------------|-----|-----------------|
|     | (অ) 0                                                    | (আ) | 1               |
|     | ( <b>ই</b> ) e                                           | (ঈ) | $\frac{1}{e}$   |
| (খ) | $\int_{-1}^{1} \frac{dx}{1+x^2} - \mathfrak{Q}$ র মান হল |     |                 |
|     | (অ) 0                                                    | (আ) | $\frac{\pi}{4}$ |
|     | $(\overline{z}) \frac{\pi}{2}$                           | (ঈ) | π               |
| (গ) | $\int_{-a}^{a} x \sqrt{a^2 - x^2}  dx$ -এর মান হল        |     |                 |
|     | (অ) 0                                                    | (আ) | a               |
|     | $(\overline{z})  \frac{a}{2}$                            | (ঈ) | 1               |

(ঘ) যদি P(x) একটি r ঘাতের বহুপদ রাশিমালা হয় এবং এর 12-তম অগ্রসারী অন্তর শূন্য হয় তবে

| (অ) r≤12 | (আ) | <i>r</i> = 12 |
|----------|-----|---------------|
|----------|-----|---------------|

 $(\overline{\mathbf{z}}) \quad r \ge 12 \qquad \qquad (\overline{\mathbf{y}}) \quad r < 12$ 

**Please Turn Over** 

১×১০

(2) V(3rd Sm.)-Mathematics-G/(GE/CC-3)/CBCS (ঙ) Trapezoidal নিয়মের মাধ্যমে  $\int f(x)dx$ -এর মান সঠিক হবে যদি f(x) একটি বহুপদ রাশিমালা যার ঘাত হবে (অ) 2 (আ) 4 (ই) 6 (ঈ) এদের কোনোটিই নয়। (চ) Simpson's one-third-এর নিয়মে precision-এর ঘাত হল (অ) 1 (আ) 2 (ই) 3 **(**) 4 (ছ)  $3 - 5x - x^2 = 0$  সমীকরণের একটি বীজ যাদের মধ্যে থাকবে তারা হল (অ) 2 এবং 3 (আ) 1 এবং 4 (ই) 1 এবং 2 (ঈ) 0 এবং 1 জ)  $S = \{(x_1, x_2) \mid 3x_1 + 2x_2 = 5\}$  এই সেটের প্রান্তিক বিন্দুর সংখ্যা হল (অ) 0 (আ) 1 (ই) 2 (ঈ) অসংখ্য। (ঝ) যদি (4, 3, 2), (2, 1, 4) এবং (2, 3, k) ভেক্টর তিনটি রৈখিকভাবে নির্ভরশীল হয়, তবে k-এর মান হবে (আ) 1 (অ) 0 (河) -2 **(**え) -8 (এঃ) সিমপ্লেক্স পদ্ধতিতে কোন রৈখিক প্রোগ্রামিং সমস্যার সমাধানের ক্ষেত্রে যদি একটি বাধা  $3x_1 + x_2 + x_3 \ge 7$  এইরূপে থাকে, তবে যে চলরাশির প্রবেশ ঘটাতে হয়, তা হল (অ) Slack চলরাশি (আ) Surplus চলরাশি (ই) মৌল চলরাশি (ঈ) উপরের কোনোটিই নয়।

## ইউনিট - ১

(সমাকলন বিদ্যা)

২। **যে-কোনো তিনটি** প্রশ্নের উত্তর দাও ঃ

(ক) যদি 
$$I_n = \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx$$
 এবং  $J_n = \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx$  হয় তবে দেখাও যে (অ)  $I_n = J_n$  (আ)  $I_n = \frac{n-1}{n} I_{n-2}$  ।  
অতঃপর  $\int_{0}^{\frac{\pi}{2}} \sin^9 x \, dx$  -এর মান নির্ণয় করো ।

(ম) দেমাও যে 
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$$

(গ) মান নির্ণয় করো : 
$$\lim_{n \to \infty} \left[ \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right]$$
 ৫

(3) (FV) 3 (7) 
$$\Gamma\left(\frac{1}{9}\right) \cdot \Gamma\left(\frac{2}{9}\right) \dots \Gamma\left(\frac{8}{9}\right) = \frac{3}{16}\pi^4$$
 (3)

#### ইউনিট - ২

#### (সাংখিক পদ্ধতি)

**৩। যে-কোনো চারটি** প্রশ্নের উত্তর দাও ঃ

(খ) 
$$h=1$$
 ধরে  $(\Delta+
abla)^2 f(x)$ -এর মান নির্ণয় করো যেখানে  $f(x)=x^2+x$  ৫

- (ঘ) প্রদত্ত ছক থেকে বহুপদ রাশিমালা নির্ণয় করো যার ঘাত 3 °
   x -1 0 1 2
   y 0.1 0.5 1 -3

## (ঙ) Newton–Raphson পদ্ধতিতে $x^3 + 3x - 5 = 0$ সমীকরণের চার সার্থক অঙ্ক পর্যন্ত একটি ধনাত্মক বীজ নির্ণয় করো। ৫

- (ছ) সমদ্বিখণ্ডন (Bisection) পদ্ধতি ব্যবহার করে (0, 1) অন্তরে দুই দশমিক স্থান পর্যন্ত আসন্ন মানে x<sup>4</sup> + 2x<sup>2</sup> + x 2 = 0
   সমীকরণের একটি বীজ নির্ণয় করো।

#### **Please Turn Over**

(3)

(4)

ইউনিট - ৩

#### (রৈখিক প্রোগ্রামিং)

### 8। **যে-কোনো চারটি** প্রশের উত্তর দাও ঃ

- (ক) প্রমাণ করো যে,  $X = \{(x, y) \mid x + 2y \le 5\}$  সেট্টি  $E^2$ -তে একটি convex সেট। Ć
- (খ)  $x_1 = 2, x_2 = 4, x_3 = 5$  হল নিম্নলিখিত সহসমীকরণের একটি কার্যকর সমাধান  $\sharp$ 
  - $2x_1 x_2 + 2x_3 = 10$  $x_1 + 4x_2 = 18$
  - $x_1, x_2, x_3 \ge 0$

ওই কার্যকর সমাধানকে মৌল কার্যকর সমাধানে রূপান্তরিত করো।

(গ) লেখচিত্রের সাহায্যে সমাধান করো ঃ

চৰম

চরম 
$$Z = 2x_1 + x_2$$
  
থেখানে,  $x_1 + x_2 \ge 5$   
 $2x_1 + 3x_2 \ge 20$   
 $4x_1 + 3x_2 \le 25$   
 $x_1, x_2 \ge 0$ 

(ঘ) dual সমস্যাটি লেখো যেখানে মুখ্য সমস্যাটি হল ঃ

অবম 
$$Z = x_1 + 3x_2$$
  
যেখানে,  $x_1 + x_2 \le 3$   
 $2x_1 - x_2 \ge -1$   
 $x_1 + 2x_2 = 5$   
এবং  $x_1 \ge 0, x_2$ -এর চিহ্ন অমীমাংসিত।

(৬) Simplex পদ্ধতিতে রৈখিক প্রোগ্রামিং সমস্যাটি সমাধান করো ঃ

চরম 
$$Z = x_1 + x_2 + 3x_3$$
  
যেখানে,  $3x_1 + 2x_2 + 2x_3 \le 3$   
 $2x_1 + x_2 + 2x_3 \le 2$   
এবং  $x_1, x_2, x_3 \ge 0$ 

Č

Č

Ć

Č

(চ) নিম্নলিখিত পরিবহন সমস্যাটির সমাধান করো ঃ

|                | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $a_i$ |
|----------------|-------|-------|-------|-------|-------|
| 0 <sub>1</sub> | 6     | 4     | 2     | 7     | 8     |
| O <sub>2</sub> | 5     | 2     | 4     | 6     | 14    |
| 03             | 6     | 5     | 2     | 5     | 9     |
| 0 <sub>4</sub> | 4     | 3     | 2     | 1     | 11    |
| $b_j$          | 7     | 13    | 12    | 10    | _     |

(ছ) নিম্নলিখিত Profit matrix-এর আরোপ সমস্যাটি সমাধান করো ঃ

|     |     | মানুষ |    |        |    |
|-----|-----|-------|----|--------|----|
|     |     | A     | В  | С<br>С | D  |
|     | Ι   | 10    | 25 | 15     | 20 |
| কাজ | Π   | 15    | 30 | 5      | 16 |
| 110 | III | 35    | 20 | 12     | 24 |
|     | IV  | 17    | 25 | 24     | 20 |

# [English Version]

The figures in the margin indicate full marks.

1. Answer *all* questions :  
(a) Value of 
$$\int_{0}^{\infty} e^{-x} dx$$
 is  
(i) 0 (ii) 1  
(iii)  $e$  (iv)  $\frac{1}{e}$ .  
(b) Value of  $\int_{-1}^{1} \frac{dx}{1+x^2}$  is  
(i) 0 (ii)  $\frac{\pi}{4}$   
(iii)  $\frac{\pi}{2}$  (iv)  $\pi$ .

**Please Turn Over** 

(5)

1×10

ć

Č

(6)

| (c) | Value of $\int_{-a}^{a} x \sqrt{a^2 - x^2}  dx$ is                 |              |                                                          |
|-----|--------------------------------------------------------------------|--------------|----------------------------------------------------------|
|     | (i) 0                                                              | (ii)         | a                                                        |
|     | (iii) $\frac{a}{2}$                                                | (iv)         | 1.                                                       |
| (d) | If $P(x)$ is a polynomial of degree $r$ and 12th                   | forw         | ard difference of $P(x)$ is zero then                    |
|     | (i) $r \le 12$                                                     | (ii)         | <i>r</i> = 12                                            |
|     | (iii) $r \ge 12$                                                   | (iv)         | <i>r</i> < 12.                                           |
| (e) | Trapezoidal rule in finding $\int_{a}^{b} f(x)dx$ gives ex         | act v        | value if $f(x)$ is a polynomial of degree                |
|     | (i) 2                                                              | (ii)         | 4                                                        |
|     | (iii) 6                                                            | (iv)         | None of these.                                           |
| (f) | The degree of precision of Simpson's one-thin                      | rd ru        | le is                                                    |
|     | (i) 1                                                              | (ii)         | 2                                                        |
|     | (iii) 3                                                            | (iv)         | 4.                                                       |
| (g) | One of the roots of $3 - 5x - x^2 = 0$ lies in be                  | twee         | n                                                        |
|     | (i) 2 and 3                                                        | (ii)         | 1 and 4                                                  |
|     | (iii) 1 and 2                                                      | (iv)         | 0 and 1.                                                 |
| (h) | The number of extreme points of the set $S =$                      | $\{(x_1,$    | $(x_2)   3x_1 + 2x_2 = 5 \}$ is                          |
|     | (i) 0                                                              | (ii)         | 1                                                        |
|     | (iii) 2                                                            | (iv)         | infinite.                                                |
| (i) | If the vectors $(4, 3, 2)$ , $(2, 1, 4)$ and $(2, 3, k)$           | ) are        | linearly dependent, then the value of $k$ is             |
|     | (i) 0                                                              | (ii)         | 1                                                        |
|     | (iii) -8                                                           | (iv)         | -2.                                                      |
| (j) | To solve by simplex method of the LPP havi<br>to introduce in it a | ng o         | ne of the constraints $3x_1 + x_2 + x_3 \ge 7$ , we have |
|     | (i) slack variable                                                 | (ii)         | surplus variable                                         |
|     |                                                                    | <i>(</i> • ) |                                                          |

(iii) basic variable (iv) None of these.

## Unit - 1

## (Integral Calculus)

2. Answer any three questions :

(a) If 
$$I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$
 and  $J_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$   
Show that (i)  $I_n = J_n$   
(ii)  $I_n = \frac{n-1}{n} I_{n-2}$   
Also find the value of  $\int_0^{\frac{\pi}{2}} \sin^9 x \, dx$ .  
(b) Show that  $\int_0^1 \frac{\log(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \log 2$ .  
5

(c) Find the value of 
$$\lim_{n \to \infty} \left[ \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right].$$
 5

(d) Express 
$$\int_{0}^{\frac{\pi}{2}} \sin^4 \theta \cos^6 \theta$$
 as a Beta function and hence evaluate it. 1+4

(e) Show that 
$$\Gamma\left(\frac{1}{9}\right) \cdot \Gamma\left(\frac{2}{9}\right) \dots \Gamma\left(\frac{8}{9}\right) = \frac{3}{16}\pi^4$$
. 5

# Unit - 2 (Numerical Methods)

- 3. Answer any four questions :
  - (a) Given the following table,

| x    | 0   | 5   | 10  | 20   |
|------|-----|-----|-----|------|
| f(x) | 1.0 | 2.6 | 3.8 | 15.4 |

Construct the difference table.

**Please Turn Over** 

- (b) Taking h = 1, find the value of  $(\Delta + \nabla)^2 f(x)$ , where  $f(x) = x^2 + x$ .
- (c) Evaluate  $\int_{0}^{1} (4x + 3x^2) dx$ , taking 10 sub-intervals by Trapezoidal Rule. Compare the exact value and

(8)

find the relative error.

- (d) Find the polynomial of degree 3 from the given table :  $\begin{vmatrix} x & -1 \\ y & 0.1 \end{vmatrix}$
- (e) Find a positive real root of  $x^3 + 3x 5 = 0$  by Newton–Raphson method correct to four significant figures. 5

# (f) Find the values of the integral $\int_{-1}^{1} |x| dx$ by Trapezoidal and Simpson's one-third Rule taking two sub-intervals. Which one of these involves less error? 4+1

(g) Use the method of Bisection to find a root of the equation  $x^4 + 2x^2 + x - 2 = 0$  lying in the interval (0, 1) correct upto 2-decimal places. 5

#### Unit - 3

#### (Linear Programming)

#### 4. Answer any four questions :

- (a) Prove that in  $E^2$  the set  $X = \{(x, y) | x + 2y \le 5\}$  is a convex set. 5
- (b) Given  $x_1 = 2$ ,  $x_2 = 4$ ,  $x_3 = 5$  is a feasible solution to the following system of equations 5

$$2x_1 - x_2 + 2x_3 = 10$$
$$x_1 + 4x_2 = 18$$
$$x_1, x_2, x_3 \ge 0$$

Reduce the feasible solution to a basic feasible solution.

(c) Solve graphically the following LPP :

Maximize  $Z = 2x_1 + x_2$ 

Subject to 
$$x_1 + x_2 \ge 5$$
  
 $2x_1 + 3x_2 \ge 20$   
 $4x_1 + 3x_2 \le 25$   
 $x_1, x_2 \ge 0$ 

5

5

3+1+1

(d) Write down the Dual of the following primal problem :

Minimize 
$$Z = x_1 + 3x_2$$
  
Subject to  $x_1 + x_2 \le 3$   
 $2x_1 - x_2 \ge -1$   
 $x_1 + 2x_2 = 5$   
and  $x_1 \ge 0, x_2$  is unrestricted in sign.

(e) Solve the following LPP by simplex method :

Maximize  $Z = x_1 + x_2 + 3x_3$ Subject to  $3x_1 + 2x_2 + 2x_3 \le 3$  $2x_1 + x_2 + 2x_3 \le 2$ and  $x_1, x_2, x_3 \ge 0.$ 

(f) Solve the following transportation problem

|                | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $a_i$ |
|----------------|-------|-------|-------|-------|-------|
| 0 <sub>1</sub> | 6     | 4     | 2     | 7     | 8     |
| O <sub>2</sub> | 5     | 2     | 4     | 6     | 14    |
| O <sub>3</sub> | 6     | 5     | 2     | 5     | 9     |
| $O_4$          | 4     | 3     | 2     | 1     | 11    |
| $b_i$          | 7     | 13    | 12    | 10    |       |

(g) Solve the assignment problem with following profit matrix.

|     |     | Man |    |    |    |
|-----|-----|-----|----|----|----|
|     |     | A   | В  | С  | D  |
|     | Ι   | 10  | 25 | 15 | 20 |
| Ioh | II  | 15  | 30 | 5  | 16 |
| 500 | III | 35  | 20 | 12 | 24 |
|     | IV  | 17  | 25 | 24 | 20 |
|     |     |     |    |    |    |

5

5



