2021

MATHEMATICS - GENERAL

Paper : GE/CC-3

Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.
Symbols and notations have their usual meanings.
প্রান্তলিখিত সংখ্যাগুলি পূণমান নির্দেশক।
১। নিম্নলিখিত সব প্রশ্নগলির উত্তর দাও:
(क) $\int_{0}^{\infty} e^{-x} d x$-এর মাन হল
(ज) 0
(आ) 1
(弓) e
(ঈ) $\frac{1}{e}$
(খ) $\int_{-1}^{1} \frac{d x}{1+x^{2}}$-এর মান হन
(ज) 0
(आ) $\frac{\pi}{4}$
(ই) $\frac{\pi}{2}$
(ঈ) π
(গ) $\int_{-a}^{a} x \sqrt{a^{2}-x^{2}} d x$-এর মাन হল
(ज) 0
(आ) a
(ই) $\frac{a}{2}$
(घ) 1
(ঘ) यদি $P(x)$ একটি r ঘাতের বহহপদ রাশিমালা হয় এবং এর 12-তম অগ্রসারী অন্তর শূন্য হয় তবে
(ज) $r \leq 12$
(অ) $r=12$
(弓) $r \geq 12$
(अ) $r<12$
(৬) Trapezoidal নিয়ম্মে মাধ্যমে $\int_{a}^{b} f(x) d x$-এর মান সঠিক হবে যদি $f(x)$ একটি বহুপদ রাশিমালা যার ঘাত হবে
(অ) 2
(आ) 4
(弓) 6
(ঈ) এদের কোনোটিই নয়।
(চ) Simpson's one-third-এর নিয়ম্ম precision-এর ঘাত হল
(অ) 1
(आ) 2
(ই) 3
(ঈ) 4
(ছ) $3-5 x-x^{2}=0$ সমীকরণের একটি বীজ যাদের মধ্যে থাকবে তারা হল
(অ) 2 এবং 3
(আ) 1 এবং 4
(ই) 1 এবং 2
(ॠ) 0 এবং 1
(জ) $S=\left\{\left(x_{1}, x_{2}\right) \mid 3 x_{1}+2 x_{2}=5\right\}$ এই সেটের প্রান্তিক বিন্দুর সংখ্যা হল
(অ) 0
(आ) 1
(ই) 2
(ঈ) অসংখ্য।
(ঝ) যদি $(4,3,2),(2,1,4)$ এবং $(2,3, k)$ ভেক্টর তিনটি রৈখিকভাবে নির্ভরশীল হয়, তবে k-এর মান হবে
(অ) 0
(आ) 1
(ই) -8
(ঈ) -2
(ঞ) সিমপ্লেক্স পদ্ধতিতে কোন রৈখিক প্রোগ্রামিং সমস্যার সমাধানের ক্ষেত্রে যদি একটি বাধা $3 x_{1}+x_{2}+x_{3} \geq 7$ এইরূপে থাকে, তবে যে চলরাশির প্রবেশ ঘটাতে হয়, তা হল
(অ) Slack চলরাশি
(আ) Surplus চলরাশি
(ই) মৌল চলরাশি
(ঈ) উপরের কোনোটিই নয়।

ইউনিট - ১

(সমাকলন বিদ্যা)

২। যে-কোনো তিনটি প্রশ্নের উত্তর দাও:
(ক) যদি $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ এবং $J_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ হয় তবে দেখাও যে (অ) $I_{n}=J_{n} \quad$ (আ) $I_{n}=\frac{n-1}{n} I_{n-2}$ ।

অতঃপর $\int_{0}^{\frac{\pi}{2}} \sin ^{9} x d x$-এর মান নির্ণয় করো।
(খ) দেখাও যে $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x=\frac{\pi}{8} \log 2$
(গ) মান নির্ণয় করো : $\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n}\right]$
(ঘ) $\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \cos ^{6} \theta$-কে বিটা অপেক্ষকের আকারে প্রকাশ করো এবং তারপর মান নিণর় করো।

$$
১+8
$$

(ঙ) দেখাও যে $\Gamma\left(\frac{1}{9}\right) \cdot \Gamma\left(\frac{2}{9}\right) \ldots . . \Gamma\left(\frac{8}{9}\right)=\frac{3}{16} \pi^{4} \quad$ ।

ইউনিট - ২ (সাংখিক পদ্ধতি)

৩। যে-কোনো চারটি প্রশ্নের উত্তর দাও :
(ক) পার্থক্য সারণী নির্ণয় করো :

x	0	5	10	20
$f(x)$	1.0	2.6	3.8	15.4

(খ) $h=1$ ধরে $(\Delta+\nabla)^{2} f(x)$-এর মান নির্ণয় করো যেখানে $f(x)=x^{2}+x$
(গ) Trapezoidal-এর নিয়মে ১০টি উপ-অন্তর নিয়ে $\int_{0}^{1}\left(4 x+3 x^{2}\right) d x$-এর মান নির্ণয় করো। সঠিক মানের সক্গে তুলনা করো এবং আপেক্ষিক ত্রুটির মান নির্ণয় করো।

$$
v+১+১
$$

(घ) প্রদত্ত ছক থেকে বহুপদ রাশিমালা নির্ণয় করো যার ঘাত 3 : | x | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| y | 0.1 | 0.5 | 1 | -3 |

(ঙ) Newton-Raphson পদ্ধতিতে $x^{3}+3 x-5=0$ সমীকরণের চার সার্থক অঙ্ক পর্যন্ত একটি ধনাত্মক বীজ নির্ণয় করো।
(চ) দুইটি উপ-অন্তর নিয়ে Trapezoidal এবং Simpson's one-third-এর নিয়মে $\int_{-1}^{1}|x| d x-এ র$ মান নির্ণয় করো। এদের মধ্ব্যে যার ত্রুটির পরিমাণ কম সেটি উল্লেখ করো। $8+3$
(ছ) সমদ্বিখণ্ডন (Bisection) পদ্ধতি ব্যবহার করে $(0,1)$ অন্তরে দুই দশমিক স্থান পর্যন্ত আসন্ন মানে $x^{4}+2 x^{2}+x-2=0$ সমীকরণের একটি বীজ নির্ণয় করো।

ইউনিট - ৩

(রৈখিক প্রো্রেমিং)

8। যে-কোনো চারটি প্রশ্নের উত্তর দাও:
(ক) প্রমাণ করো যে, $X=\{(x, y) \mid x+2 y \leq 5\}$ সেট্টি E^{2}-তে একটি convex সেট।
(খ) $x_{1}=2, x_{2}=4, x_{3}=5$ হল निম্নলিখিত সহ্সমীকরণের একটি কার্যকর সমাধান :

$$
\begin{aligned}
& 2 x_{1}-x_{2}+2 x_{3}=10 \\
& x_{1}+4 x_{2}=18 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

ওই কার্যকর সমাধানকে .ৌৗল কার্যকর সমাধানে রূপান্তরিত করো।
(গ) লেখচিত্রের সাহায্যে সমাধান করো ঃ
চরম $\quad Z=2 x_{1}+x_{2}$
যেখানে, $\quad x_{1}+x_{2} \geq 5$
$2 x_{1}+3 x_{2} \geq 20$
$4 x_{1}+3 x_{2} \leq 25$
$x_{1}, x_{2} \geq 0$
(ঘ) dual সমস্যাটি লেখো যেখানে মুখ্য সমস্যাটি হল ঃ
অবম $\quad Z=x_{1}+3 x_{2}$
যেখানে, $\quad x_{1}+x_{2} \leq 3$
$2 x_{1}-x_{2} \geq-1$
$x_{1}+2 x_{2}=5$
এবং $\quad x_{1} \geq 0, x_{2}$-এর চিহ্ অমীমাংসিত।
(ঙ) Simplex পদ্ধতিতে রৈখিক প্রোগ্রামিং সমস্যাটি সমাধান করো :
চরম $\quad Z=x_{1}+x_{2}+3 x_{3}$
যেখানে, $\quad 3 x_{1}+2 x_{2}+2 x_{3} \leq 3$ $2 x_{1}+x_{2}+2 x_{3} \leq 2$

এবং $x_{1}, x_{2}, x_{3} \geq 0$
(চ) নিম্নলিখিত পরিবহুন সমস্যাটির সমাধান করো :

(ছ) নিম্নলিখিত Profit matrix-এর আরোপ সমস্যাটি সমাধান করো ঃ

কাজ		মানুষ			
		A	B	C	D
	I	10	25	15	20
	II	15	30	5	16
	III	35	20	12	24
	IV	17	25	24	20

[English Version]

The figures in the margin indicate full marks.

1. Answer all questions:
(a) Value of $\int_{0}^{\infty} e^{-x} d x$ is
(i) 0
(ii) 1
(iii) e
(iv) $\frac{1}{e}$.
(b) Value of $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ is
(i) 0
(ii) $\frac{\pi}{4}$
(iii) $\frac{\pi}{2}$
(iv) π.
(c) Value of $\int_{-a}^{a} x \sqrt{a^{2}-x^{2}} d x$ is
(i) 0
(ii) a
(iii) $\frac{a}{2}$
(iv) 1 .
(d) If $P(x)$ is a polynomial of degree r and 12 th forward difference of $P(x)$ is zero then
(i) $r \leq 12$
(ii) $r=12$
(iii) $r \geq 12$
(iv) $r<12$.
(e) Trapezoidal rule in finding $\int_{a}^{b} f(x) d x$ gives exact value if $f(x)$ is a polynomial of degree
(i) 2
(ii) 4
(iii) 6
(iv) None of these.
(f) The degree of precision of Simpson's one-third rule is
(i) 1
(ii) 2
(iii) 3
(iv) 4 .
(g) One of the roots of $3-5 x-x^{2}=0$ lies in between
(i) 2 and 3
(ii) 1 and 4
(iii) 1 and 2
(iv) 0 and 1 .
(h) The number of extreme points of the set $S=\left\{\left(x_{1}, x_{2}\right) \mid 3 x_{1}+2 x_{2}=5\right\}$ is
(i) 0
(ii) 1
(iii) 2
(iv) infinite.
(i) If the vectors $(4,3,2),(2,1,4)$ and $(2,3, k)$ are linearly dependent, then the value of k is
(i) 0
(ii) 1
(iii) -8
(iv) -2 .
(j) To solve by simplex method of the LPP having one of the constraints $3 x_{1}+x_{2}+x_{3} \geq 7$, we have to introduce in it a
(i) slack variable
(ii) surplus variable
(iii) basic variable
(iv) None of these.

Unit - 1
 (Integral Calculus)

2. Answer any three questions:
(a) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ and $J_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$

Show that (i) $I_{n}=J_{n}$
(ii) $I_{n}=\frac{n-1}{n} I_{n-2}$

Also find the value of $\int_{0}^{\frac{\pi}{2}} \sin ^{9} x d x$.
(b) Show that $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x=\frac{\pi}{8} \log 2$.
(c) Find the value of $\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n}\right]$.
(d) Express $\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \cos ^{6} \theta$ as a Beta function and hence evaluate it.
(e) Show that $\Gamma\left(\frac{1}{9}\right) \cdot \Gamma\left(\frac{2}{9}\right) \cdots \cdot \Gamma\left(\frac{8}{9}\right)=\frac{3}{16} \pi^{4}$.

(Numerical Methods)

Unit - 2
3. Answer any four questions:
(a) Given the following table,

x	0	5	10	20
$f(x)$	1.0	2.6	3.8	15.4

Construct the difference table.
(b) Taking $h=1$, find the value of $(\Delta+\nabla)^{2} f(x)$, where $f(x)=x^{2}+x$.
(c) Evaluate $\int_{0}^{1}\left(4 x+3 x^{2}\right) d x$, taking 10 sub-intervals by Trapezoidal Rule. Compare the exact value and find the relative error.

(d) Find the polynomial of degree 3 from the given table : | x | -1 | 0 | 1 | 2 |
| :--- | :--- | :---: | :---: | :---: |
| y | 0.1 | 0.5 | 1 | -3 |

(e) Find a positive real root of $x^{3}+3 x-5=0$ by Newton-Raphson method correct to four significant figures.
(f) Find the values of the integral $\int_{-1}^{1}|x| d x$ by Trapezoidal and Simpson's one-third Rule taking two sub-intervals. Which one of these involves less error?
(g) Use the method of Bisection to find a root of the equation $x^{4}+2 x^{2}+x-2=0$ lying in the interval $(0,1)$ correct upto 2 -decimal places.

Unit - 3

(Linear Programming)

4. Answer any four questions:
(a) Prove that in E^{2} the set $X=\{(x, y) \mid x+2 y \leq 5\}$ is a convex set.
(b) Given $x_{1}=2, x_{2}=4, x_{3}=5$ is a feasible solution to the following system of equations

$$
\begin{aligned}
& 2 x_{1}-x_{2}+2 x_{3}=10 \\
& x_{1}+4 x_{2}=18 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Reduce the feasible solution to a basic feasible solution.
(c) Solve graphically the following LPP :

Maximize $Z=2 x_{1}+x_{2}$
Subject to $x_{1}+x_{2} \geq 5$

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \geq 20 \\
& 4 x_{1}+3 x_{2} \leq 25 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(d) Write down the Dual of the following primal problem :

Minimize $Z=x_{1}+3 x_{2}$

$$
\begin{array}{ll}
\text { Subject to } & x_{1}+x_{2} \leq 3 \\
& 2 x_{1}-x_{2} \geq-1 \\
& x_{1}+2 x_{2}=5 \\
\text { and } & x_{1} \geq 0, x_{2} \text { is unrestricted in sign. }
\end{array}
$$

(e) Solve the following LPP by simplex method:

Maximize $Z=x_{1}+x_{2}+3 x_{3}$
Subject to $3 x_{1}+2 x_{2}+2 x_{3} \leq 3$
$2 x_{1}+x_{2}+2 x_{3} \leq 2$
and

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

(f) Solve the following transportation problem

| | D_{1} | | | | D_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: |$D_{3} D_{4} a_{i}$

(g) Solve the assignment problem with following profit matrix.

Job		Man			
		A	B	C	D
	I	10	25	15	20
	II	15	30	5	16
	III	35	20	12	24
	IV	17	25	24	20

